注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)工業(yè)技術(shù)無(wú)線(xiàn)電電子學(xué)、電信技術(shù)微電子封裝和集成的建模與仿真(英文版)

微電子封裝和集成的建模與仿真(英文版)

微電子封裝和集成的建模與仿真(英文版)

定 價(jià):¥498.00

作 者: 劉勝,劉勇 著
出版社: 化學(xué)工業(yè)出版社
叢編項(xiàng): 先進(jìn)電子封裝技術(shù)與關(guān)鍵材料叢書(shū)
標(biāo) 簽: 暫缺

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787122392275 出版時(shí)間: 2021-12-01 包裝: 精裝
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 696 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  隨著電子封裝的發(fā)展,電子封裝已從傳統(tǒng)的四個(gè)主要功能(電源系統(tǒng)、信號(hào)分布及傳遞、散熱與機(jī)械保護(hù))擴(kuò)展為六個(gè)功能,即增加了DFX 及系統(tǒng)測(cè)試兩個(gè)新的功能。其中DFX 是為“X”而設(shè)計(jì),X 包括:可制造性、可靠性、可維護(hù)性、成本,甚至六西格瑪。DFX 有望在產(chǎn)品設(shè)計(jì)階段實(shí)現(xiàn)工藝窗口的確定、可靠性評(píng)估和測(cè)試結(jié)構(gòu)及參數(shù)的設(shè)計(jì)等功能,真正做到“第一次就能成功”,從而將計(jì)算機(jī)輔助工程(CAE)變?yōu)橛?jì)算機(jī)主導(dǎo)工程(CE),以大大加速產(chǎn)品的上市速度。本書(shū)是全面介紹DFX 在封裝中應(yīng)用的圖書(shū)。作為封裝工藝過(guò)程和快速可靠性評(píng)估及測(cè)試建模仿真的第一本專(zhuān)著,書(shū)中包含兩位作者在工業(yè)界二十多年的豐富經(jīng)驗(yàn),以及在MEMS、IC和LED 封裝部分成功的實(shí)例,希望能給國(guó)內(nèi)同行起到拋磚引玉的作用。同時(shí),讀者將會(huì)從書(shū)中的先進(jìn)工程設(shè)計(jì)和微電子產(chǎn)品的并行工程和協(xié)同設(shè)計(jì)方法中受益。 本書(shū)第2 版新增了兩位作者在電子制造和封裝領(lǐng)域新的成果與經(jīng)驗(yàn),例如電力電子模塊的建模和仿真、電子封裝耐熱性的分析模型、3D TSV 封裝等內(nèi)容。 本書(shū)主要讀者對(duì)象為學(xué)習(xí)DFX(制造工藝設(shè)計(jì)、測(cè)試設(shè)計(jì)、可靠性設(shè)計(jì)等)的研究人員、工程師和學(xué)生等。

作者簡(jiǎn)介

  劉勝,武漢大學(xué)工業(yè)科學(xué)研究院,長(zhǎng)江學(xué)者、科技部863計(jì)劃、十一五重大項(xiàng)目“半導(dǎo)體照明工程”總體專(zhuān)家組成員,院長(zhǎng)、教授,長(zhǎng)江學(xué)者,博士生導(dǎo)師。1992年畢業(yè)于Stanford大學(xué)、獲得博士學(xué)位。1998年在美國(guó)韋恩州立大學(xué)任終身副教授。2006年回國(guó)任華中科技大學(xué)教授,同時(shí)受聘于武漢光電國(guó)家實(shí)驗(yàn)室。目前是中國(guó)科技部“863計(jì)劃”“十一五”半導(dǎo)體照明重大專(zhuān)項(xiàng)的11個(gè)專(zhuān)家之一, “863計(jì)劃”“十五”微機(jī)電系統(tǒng)(MEMS)重大專(zhuān)項(xiàng)總體專(zhuān)家組成員5個(gè)專(zhuān)家之一。1995年獲得美國(guó)白宮總統(tǒng)教授獎(jiǎng),1996年獲得ASME青年工程師獎(jiǎng),1999年被評(píng)為中國(guó)海外杰出青年科學(xué)家。

圖書(shū)目錄

Foreword by Jianbin Luo xv

Foreword by C. P. Wong xvii

Foreword by Zhigang Suo xix

Preface to Second Edition xxi

Preface to First Edition xxiii

Acknowledgments xxv

About the Authors xxvii

Part I Mechanics and Modeling 1
1 Constitutive Models and Finite Element Method 3
1.1 Constitutive Models for Typical Materials 3
1.1.1 Linear Elasticity 3
1.1.2 Elastic-Visco-Plasticity 5
1.2 Finite Element Method 9
1.2.1 Basic Finite Element Equations 9
1.2.2 Nonlinear Solution Methods 12
1.2.3 Advanced Modeling Techniques in Finite Element Analysis 14
1.2.4 Finite Element Applications in Semiconductor Packaging Modeling 17
1.3 Chapter Summary 18
References 19

2 Material and Structural Testing for Small Samples 21
2.1 Material Testing for Solder Joints 21
2.1.1 Specimens 21
2.1.2 A Thermo-Mechanical Fatigue Tester 23
2.1.3 Tensile Test 24
2.1.4 Creep Test 26
2.1.5 Fatigue Test 31
2.2 Scale Effect of Packaging Materials 32
2.2.1 Specimens 33
2.2.2 Experimental Results and Discussions 34
2.2.3 Thin Film Scale Dependence for Polymer Thin Films 39
2.3 Two-Ball Joint Specimen Fatigue Testing 41
2.4 Chapter Summary 41
References 43

3 Constitutive and User-Supplied Subroutines for Solders Considering Damage Evolution 45
3.1 Constitutive Model for Tin-Lead Solder Joint 45
3.1.1 Model Formulation 45
3.1.2 Determination of Material Constants 47
3.1.3 Model Prediction 49
3.2 Visco-Elastic-Plastic Properties and Constitutive Modeling of Underfills 50
3.2.1 Constitutive Modeling of Underfills 50
3.2.2 Identification of Material Constants 55
3.2.3 Model Verification and Prediction 55
3.3 A Damage Coupling Framework of Unified Viscoplasticity for the Fatigue of Solder Alloys 56
3.3.1 Damage Coupling Thermodynamic Framework 56
3.3.2 Large Deformation Formulation 62
3.3.3 Identification of the Material Parameters 63
3.3.4 Creep Damage 66
3.4 User-Supplied Subroutines for Solders Considering Damage Evolution 67
3.4.1 Return-Mapping Algorithm and FEA Implementation 67
3.4.2 Advanced Features of the Implementation 69
3.4.3 Applications of the Methodology 71
3.5 Chapter Summary 76
References 76

4 Accelerated Fatigue Life Assessment Approaches for Solders in Packages 79
4.1 Life Prediction Methodology 79
4.1.1 Strain-Based Approach 80
4.1.2 Energy-Based Approach 82
4.1.3 Fracture Mechanics-Based Approach 82
4.2 Accelerated Testing Methodology 82
4.2.1 Failure Modes via Accelerated Testing Bounds 83
4.2.2 Isothermal Fatigue via Thermal Fatigue 83
4.3 Constitutive Modeling Methodology 83
4.3.1 Separated Modeling via Unified Modeling 83
4.3.2 Viscoplasticity with Damage Evolution 84
4.4 Solder Joint Reliability via FEA 84
4.4.1 Life Prediction of Ford Joint Specimen 84
4.4.2 Accelerated Testing: Insights from Life Prediction 87
4.4.3 Fatigue Life Prediction of a PQFP Package 91
4.5 Life Prediction of Flip-Chip Packages 93
4.5.1 Fatigue Life Prediction with and without Underfill 93
4.5.2 Life Prediction of Flip-Chips without Underfill via Unified and Separated Constitutive Modeling 95
4.5.3 Life Prediction of Flip-Chips under Accelerated Testing 96
4.6 Chapter Summary 99
References 99

5 Multi-Physics and Multi-Scale Modeling 103
5.1 Multi-Physics Modeling 103
5.1.1 Direct-Coupled Analysis 103
5.1.2 Sequential Coupling 104
5.2 Multi-Scale Modeling 106
5.3 Chapter Summary 107
References 108

6 Modeling Validation Tools 109
6.1 Structural Mechanics Analysis 109
6.2 Requirements of Experimental Methods for Structural Mechanics Analysis 111
6.3 Whole Field Optical Techniques 112
6.4 Thermal Strains Measurements Using Moire Interferometry 113
6.4.1 Thermal Strains in a Plastic Ball Grid Array (PBGA) Interconnection 113
6.4.2 Real-Time Thermal Deformation Measurements Using Moire Interferometry 116
6.5 In-Situ Measurements on. Micro-Machined Sensors 116
6.5.1 Micro-Machined Membrane Structure in a Chemical Sensor 116
6.5.2 In-Situ Measurement Using Twyman-Green Interferometry 118
6.5.3 Membrane Deformations due to Power Cycles 118
6.6 Real-Time Measurements Using Speckle Interferometry 119
6.7 Image Processing and Computer Aided Optical Techniques 120
6.7.1 Image ftocessing for Fringe Analysis 120
6.7.2 Phase Shifting Technique for Increasing Displacement Resolution 120
6.8 Real-Time Thermal-Mechanical Loading Tools 123
6.8.1 Micro-Mechanical Testing 123
6.8.2 Environmental Chamber 124
6.9 Warpage Measurement Using PM-SM System 124
6.9.1 Shadow Moire and Project Moire Setup 125
6.9.2 Warpage Measurement of a BGA, TXvo Crowded PCBs 127
6.10 Chapter Summary 131
References 131

7 Application of Fracture Mechanics 135
7.1 Fundamental of Fracture Mechanics 135
7.1.1 Energy Release Rate 136
7.1.2 J Integral 138
7.1.3 Interfacial Crack 139
7.2 Bulk Material Cracks in Electronic Packages 141
7.2.1 Background 141
7.2.2 Crack Propagation in Ceramic/Adhesive/Glass System 142
7.2.3 Results 146
7.3 Interfacial Fracture Toughness 148
7.3.1 Background 148
7.3.2 Interfacial Fracture Toughness of Flip-Chip Package 0between Passivated Silicon Chip and Underfill 150
7.4 Three-Dimensional Energy Release Rate Calculation 159
7.4.1 Fracture Analysis 160
7.4.2 Results and Comparison 160
7.5 Chapter Summary 165
References 165

8 Concurrent Engineering for Microelectronics 169
8.1 Design Optimization 169
8.2 New Developments and Trends in Integrated Design Tools 179
8.3 Chapter Summary 183
References 183

Part II Modeling in Microelectronic Packaging and Assembly 185
9 Typical IC Packaging and Assembly Processes 187
9.1 Wafer Process and Thinning 188
9.1.1 Wafer Process Stress Models 188
9.1.2 Thin Film Deposition 189
9.1.3 Backside Grind for Thinning 191
9.2 Die Pick Up 193
9.3 Die Attach 198
9.3.1 Material Constitutive Relations 200
9.3.2 Modeling and Numerical Strategies 201
9.3.3 FEA Simulation Result of Flip-Chip Attach 204
9.4 Wire Bonding 206
9.4.1 Assumption, Material Properties and Method of Analysis 207
9.4.2 Wire Bonding Process with Different Parameters 208
9.4.3 Impact of Ultrasonic Amplitude 210
9.4.4 Impact of Ultrasonic Frequency 212
9.4.5 Impact of Friction Coefficients between Bond Pad and FAB 214
9.4.6 Impact of Different Bond Pad Thickness 217
9.4.7 Impact of Different Bond Pad Structures 217
9.4.8 Modeling Results and Discussion for Cooling Substrate Temperature after Wire Bonding 221
9.5 Molding 223
9.5.1 Molding Flow Simulation 223
9.5.2 Curing Stress Model 230
9.5.3 Molding Ejection and Clamping Simulation 236
9.6 Leadframe Forming/Singulation 241
9.6.1 Euler Forward versus Backward Solution Method 242
9.6.2 Punch Process Setup 242
9.6.3 Punch Simulation by ANSYS Implicit 244
9.6.4 Punch Simulation by LS-DYNA 246
9.6.5 Experimental Data 248
9.7 Chapter Summary 252
References 252

10 Opto Packaging and Assembly 255
10.1 Silicon Substrate Based Opto Package Assembly 255
10.1.1 State of the Technology 255
10.1.2 Monte Carlo Simulation of Bonding/Soldering Process 256
10.1.3 Effect of Matching Fluid 256
10.1.4 Effect of the Encapsulation 258
10.2 Welding of a Pump Laser Module 258
10.2.1 Module Description 258
10.2.2 Module Packaging Process Flow 258
10.2.3 Radiation Heat Transfer Modeling for Hermetic Sealing Process 259
10.2.4 Two-Dimensional FEA Modeling for Hermetic Sealing 260
10.2.5 Cavity Radiation Analyses Results and Discussions 262
10.3 Chapter Summary 264
References 264

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) leeflamesbasketballcamps.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)