注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)工業(yè)技術(shù)化學(xué)工業(yè)化學(xué)與應(yīng)用

化學(xué)與應(yīng)用

化學(xué)與應(yīng)用

定 價(jià):¥280.00

作 者: 黃進(jìn),林寧,彼得·張榮貴 等 著
出版社: 化學(xué)工業(yè)出版社
叢編項(xiàng): 先進(jìn)功能材料叢書·聚多糖納米晶
標(biāo) 簽: 高分子化學(xué)(高聚物) 化學(xué) 自然科學(xué)

ISBN: 9787122229847 出版時間: 2015-03-01 包裝: 精裝
開本: 16開 頁數(shù): 301 字?jǐn)?shù):  

內(nèi)容簡介

《先進(jìn)功能材料叢書·聚多糖納米晶:化學(xué)與應(yīng)用》采用簡明的語言、豐富的數(shù)據(jù)圖表,闡明了來自天然生物質(zhì)資源的聚多糖納米晶的提取、結(jié)構(gòu)、性質(zhì)、化學(xué)修飾、材料制備等方面的理論知識和實(shí)踐經(jīng)驗(yàn),總結(jié)了聚多糖納米晶改性材料功能化、高性能化的研究思路和技術(shù)方案。不僅包含作者在過去十年中以保護(hù)環(huán)境和降低石油消耗為目標(biāo),圍繞可再生、可生物降解的聚多糖納米晶發(fā)展成為高性能材料及功能材料的研究工作的凝練,同時涵蓋了國內(nèi)外同行的優(yōu)秀研究成果。
  《先進(jìn)功能材料叢書·聚多糖納米晶:化學(xué)與應(yīng)用》主要包括纖維素納米晶、甲殼素納米晶及淀粉納米晶的制備、化學(xué)和物理改性、納米復(fù)合材料和功能材料構(gòu)建的相關(guān)理論和技術(shù)等內(nèi)容,并且對聚多糖納米晶的理論研究體系建立、應(yīng)用拓展及發(fā)展方向等進(jìn)行了展望。
  《先進(jìn)功能材料叢書·聚多糖納米晶:化學(xué)與應(yīng)用》可供生物質(zhì)化學(xué)與化工、高分子科學(xué)、環(huán)境科學(xué)、材料科學(xué)、農(nóng)業(yè)化學(xué)、納米科學(xué)與技術(shù)等相關(guān)專業(yè)的研究生學(xué)習(xí)使用,也可作為相關(guān)科研工作和工程技術(shù)人員的參考書。

作者簡介

黃進(jìn),博士、武漢理工大學(xué)教授、博士生導(dǎo)師,IUPAC、中國化學(xué)會、中國微米納米技術(shù)學(xué)會納米科學(xué)技術(shù)分會、中國毒理學(xué)會納米毒理學(xué)專業(yè)委員會、中國生物材料委員會會員,先后受聘為中國科學(xué)院高級訪問學(xué)者、法國Grenoble國立理工學(xué)院訪問學(xué)者、華東師范大學(xué)兼職教授、武漢紡織大學(xué)客座教授,入選“教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃”、“江蘇省高層次創(chuàng)新創(chuàng)業(yè)人才引進(jìn)計(jì)劃”和“武漢市青年科技晨光計(jì)劃”。

圖書目錄

·List of Contributors XIII
Foreword XV
Preface XVII
1 Polysaccharide Nanocrystals: Current Status and Prospects in Materi
Science
Jin Huang, Peter R. Chang, and Alain Dufresne
1.1 Introduction to Polysaccharide Nanocrystals
1.2 Current Application of Polysaccharide Nanocrystals in Material
Science
1.3 Prospects for Polysaccharide Nanocrystal-Based Materials
List of Abbreviations
References

2 Structure and Properties of Polysaccharide Nanocrystals
Fei Hu, Shiyu Fu, Jin Huang, Debbie P. Anderson, and Peter R. Chang
2.1 Introduction
2.2 Cellulose Nanocrystals
2.2.1 Preparation of Cellulose Nanocrystals
2.2.1.1 Acid Hydrolysis Extraction of Cellulose Nanocrystals
2.2.1.2 Eects of Acid Type
2.2.1.3 Eects of Pretreatment
2.2.2 Structure and Properties of Cellulose Nanocrystals
2.2.2.1 Structure and Rigidity of Cellulose Nanocrystals
2.2.2.2 Physical Properties of Cellulose Nanocrystals
2.3 Chitin Nanocrystals
2.3.1 Preparation of Chitin Nanocrystals
2.3.1.1 Extraction of Chitin Nanocrystals by Acid Hydrolysis
2.3.1.2 Extraction of Chitin Nanocrystals by TEMPO Oxidation
2.3.2 Structure and Properties of Chitin Nanocrystals
2.3.2.1 Structure and Rigidity of Chitin Nanocrystals
2.3.2.2 Properties of Chitin Nanocrystal Suspensions
2.4 Starch Nanocrystals
2.4.1 Preparation of Starch Nanocrystals
2.4.1.1 Extraction of Starch Nanocrystals by Acid Hydrolysis
2.4.1.2 Eect of Ultrasonic Treatment
2.4.1.3 Eect of Pretreatment
2.4.2 Structure and Properties of Starch Nanocrystals
2.4.2.1 Structure of Starch Nanocrystals
2.4.2.2 Properties of Starch Nanocrystal Suspensions
2.5 Conclusion and Prospects
List of Abbreviations
References

3 Surface Modication of Polysaccharide Nanocrystals
Ning Lin and Alain Dufresne
3.1 Introduction
3.2 Surface Chemistry of Polysaccharide Nanocrystals
3.2.1 Surface Hydroxyl Groups
3.2.2 Surface Groups Originating from Various Extraction Methods
3.3 Approaches and Strategies for Surface Modication
3.3.1 Purpose and Challenge of Surface Modication
3.3.2 Comparison of Dierent Approaches and Strategies of Surface Modication
3.4 Adsorption of Surfactant
3.4.1 Anionic Surfactant
3.4.2 Cationic Surfactant
3.4.3 Nonionic Surfactant
3.5 Hydrophobic Groups Resulting from Chemical Derivatization
3.5.1 Acetyl and Ester Groups with Acetylation and Esterication
3.5.2 Carboxyl Groups Resulting from TEMPO-Mediated Oxidation
3.5.3 Derivatization with Isocyanate Carboamination
3.5.4 Silyl Groups Resulting from Silylation
3.5.5 Cationic Groups Resulting from Cationization
3.6 Polymeric Chains from Physical Absorption or Chemical Grafting
3.6.1 Hydrophilic Polymer
3.6.2 Polyester
3.6.3 Polyolen
3.6.4 Block Copolymer
3.6.5 Polyurethane andWaterborne Polyurethane
3.6.6 Other Hydrophobic Polymer
3.7 Advanced Functional Groups and Modication
3.7.1 Fluorescent and Dye Molecules
3.7.2 Amino Acid and DNA
3.7.3 Self-Cross-linking of Polysaccharide Nanocrystals
3.7.4 Photobactericidal Porphyrin Molecule
3.7.5 Imidazolium Molecule
3.7.6 Cyclodextrin Molecule and Pluronic Polymer
3.8 Concluding Remarks
List of Abbreviations
References

4 Preparation of Polysaccharide Nanocrystal-Based Nanocomposites
Hou-Yong Yu, Jin Huang, Youli Chen, and Peter R. Chang
4.1 Introduction
4.2 Casting/Evaporation Processing
4.2.1 Solution Casting/Evaporation Processing
4.2.2 Solution Casting in Aqueous Medium
4.2.2.1 Dispersion Stability of Polysaccharide Nanocrystals in Aqueous
Medium
4.2.2.2 Blending with Hydrophilic Polymers
4.2.2.3 Blending with Hydrophobic Polymers
4.2.3 Solution Casting in Organic Medium
4.2.3.1 Dispersion Stability of Polysaccharide Nanocrystals in Organic Medium
4.2.3.2 Blending with Polymers in Organic Solvent
4.3 hermoprocessing Methods
4.3.1 hermoplastic Materials Modied with Polysaccharide
Nanocrystals
4.3.2 Inuence of Surface Modication of Polysaccharide Nanocrystals on
Nanocompositehermoprocessing
4.4 Preparation of Nanobers by Electrospinning Technology
4.4.1 Electrospinning Technology
4.4.1.1 Concepts
4.4.1.2 Formation Process of Nanobers
4.4.1.3 Basic Electrospinning Parameters and Devices
4.4.1.4 Newly Emerging Electrospinning Techniques
4.4.2 Nanocomposite Nanobers Filled with Polysaccharide
Nanocrystals
4.4.2.1 Electrospun Nanobers in Aqueous Medium
4.4.2.2 Electrospun Nanobers in Non-aqueous Medium
4.5 Sol-Gel Method
4.5.1 Concepts of Sol-Gel Process
4.5.2 Polysaccharide Nanocrystal-Based or -Derived Nanocomposites
Prepared by Sol-GelMethod
4.5.3 Chiral Nanocomposites Using Cellulose Nanocrystal Template
4.5.3.1 Inorganic Chiral Materials Based on Cellulose Nanocrystal
Template
4.5.3.2 Chiral Porous Materials
4.5.3.3 Chiral Porous Carbon Materials
4.5.3.4 Metal Nanoparticle-Decorated Chiral Nematic Materials
4.6 Self-Assembly Method
4.6.1 Overview of Self-Assembly Method
4.6.2 Self-Assembly Method Toward Polysaccharide
Nanocrystal-Modied Materials
4.6.2.1 Self-Assembly of Polysaccharide Nanocrystals in Aqueous
Medium
4.6.2.2 Self-Assembly of Polysaccharide Nanocrystals in Organic
Medium
4.6.2.3 Self-Assembly of Polysaccharide Nanocrystals in Solid Film
4.6.3 Polysaccharide Nanocrystal-Modied Materials Prepared by LBL
Method
4.7 Other Methods and Prospects
List of Abbreviations
References

5 Polysaccharide Nanocrystal-Reinforced Nanocomposites
Hanieh Kargarzadeh and Ishak Ahmad
5.1 Introduction
5.2 Rubber-Based Nanocomposites
5.3 Polyolen-Based Nanocomposites
5.4 Polyurethane andWaterborne Polyurethane-Based
Nanocomposites
5.5 Polyester-Based Nanocomposites
5.6 Starch-Based Nanocomposites
5.7 Protein-Based Nanocomposites
5.8 Concluding Remarks
List of Abbreviations
References

6 Polysaccharide Nanocrystals-Based Materials for Advanced
Applications
Ning Lin, Jin Huang, and Alain Dufresne
6.1 Introduction
6.2 Surface Characteristics Induced Functional Nanomaterials
6.2.1 Active Groups
6.2.1.1 Importing Functional Groups or Molecules
6.2.1.2 Template for Synthesizing Inorganic Nanoparticles
6.2.2 Surface Charges and Hydrophilicity
6.2.2.1 Emulsion Nanostabilizer
6.2.2.2 High-Eciency Adsorption
6.2.2.3 Permselective Membrane
6.2.3 Nanoscale and High Surface Area
6.2.3.1 Surface Cell Cultivation
6.2.3.2 Water Decontamination
6.3 Nano-Reinforcing Eects in Functional Nanomaterials
6.3.1 Soft Matter
6.3.1.1 Hydrogel
6.3.1.2 Sponge, Foam, Aerogel, and Tissue-Engineering Nanosca?old
6.3.2 Special Mechanical Materials
6.3.3 Self-Healable and Shape-Memory Materials
6.3.4 Polymeric Electrolytes and Battery
6.3.5 Semi-conducting Material
6.4 Optical Materials Derived from Liquid Crystalline Property
6.5 Special Films and Systems Ascribed to Barrier Property
6.5.1 Drug Delivery - Barrier for Drug Molecules
6.5.2 Barrier Nanocomposites - Barrier forWater and Oxygen
6.6 Other Functional Applications
6.7 Concluding Remarks
List of Abbreviations
References

7 Characterization of Polysaccharide Nanocrystal-Based Materials
Alain Dufresne and Ning Lin
7.1 Introduction
7.2 Mechanical Properties of Polysaccharide Nanocrystals
7.2.1 Intrinsic Mechanical Properties of Polysaccharide
Nanocrystals
7.2.2 Mechanical Properties of Polysaccharide Nanocrystal Films
7.3 Dispersion of Polysaccharide Nanocrystals
7.3.1 Observation of Polysaccharide Nanocrystals in Matrix
7.3.2 hree-Dimensional Network of Polysaccharide Nanocrystals
7.4 Mechanical Properties of Polysaccharide Nanocrystal-Based
Materials
7.4.1 Inuence of the Morphology and Dimensions of the
Nanocrystals
7.4.2 Inuence of the Processing Method
7.5 Polysaccharide Nanocrystal/Matrix Interfacial Interactions
7.6 hermal Properties of Polysaccharide Nanocrystal-Based
Materials
7.6.1 hermal Properties of Polysaccharide Nanocrystals
7.6.2 Glass Transition of Polysaccharide Nanocrystal-Based
Nanocomposites
7.6.3 Melting/Crystallization Temperature of Polysaccharide
Nanocrystal-Based Nanocomposites
7.6.4 hermal Stability of Polysaccharide Nanocrystal-Based
Nanocomposites
7.7 Barrier Properties of Polysaccharide Nanocrystal-Based
Materials
7.7.1 Barrier Properties of Polysaccharide Nanocrystal Films
7.7.2 Swelling and Sorption Properties of Polysaccharide
Nanocrystal-Based Nanocomposites
7.7.3 Water Vapor Transfer and Permeability of Polysaccharide
Nanocrystal-Based Nanocomposites
7.7.4 Gas Permeability of Polysaccharide Nanocrystal-Based
Nanocomposites
7.8 Concluding Remarks
List of Abbreviations
References
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) leeflamesbasketballcamps.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號