注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)離散數(shù)學(xué)引論(Springer大學(xué)數(shù)學(xué)圖書——影印版)

離散數(shù)學(xué)引論(Springer大學(xué)數(shù)學(xué)圖書——影印版)

離散數(shù)學(xué)引論(Springer大學(xué)數(shù)學(xué)圖書——影印版)

定 價(jià):¥34.00

作 者: (美)安德遜 著
出版社: 清華大學(xué)出版社
叢編項(xiàng): Springer大學(xué)數(shù)學(xué)圖書
標(biāo) 簽: 組合理論

ISBN: 9787302214823 出版時(shí)間: 2009-11-01 包裝: 平裝
開本: 16開 頁(yè)數(shù): 200 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書以簡(jiǎn)潔和通俗的形式介紹組合數(shù)學(xué)的一些本質(zhì)性內(nèi)容:圖論的重要問題,計(jì)數(shù)方法和試驗(yàn)設(shè)計(jì),其中圖論約占一半篇幅。書中有大量習(xí)題和例題,習(xí)題附有部分解答和提示,適于自學(xué)。本書可用作數(shù)學(xué)、計(jì)算機(jī)科學(xué)、信息科學(xué)專業(yè)大學(xué)本科生的組合數(shù)學(xué)教材,可在大學(xué)一年級(jí)講授。

作者簡(jiǎn)介

暫缺《離散數(shù)學(xué)引論(Springer大學(xué)數(shù)學(xué)圖書——影印版)》作者簡(jiǎn)介

圖書目錄

Contents
1. Counting and Binomial Coefficients
 1.1 Basic Principles
 1.2 Factorials
 1.3 Selections
 1.4 Binomial Coefficients and Pascal's Triangle
 1.5 Selections with- --Repetitions
 1.6 AUsefulMatrixInversion
2. Recurrence
 2.1 Some Examples
 2.2 The Auxiliary Equation Method
 2.3 Generating Fhnctions
 2.4 Derangements
 2.5 Sorting Algorithms
 2.6 Catalan Numbers
3. Introduction to Graphs
 3.1 The Concept of a Graph
 3.2 Paths in Graphs
 3.3 Trees
 3.4 Spanning Trees
 3.5 Bipartite Graphs
 3.t5 Planarity
 3.7 Polyhedra.
4. Travelling Round a Graph
 4 1 Hamiltonian Graphs     
 4.2 Planarity and Hamiltonian Graphs
 4.3 The Travelling Salesman Problem
 4.4 Gray Codes
 4.5 EulerianDigraphs
5. Partitions and Colourings
 5.1 Partitions of a Set
 5.2 StirlingNumbers
 5.3 Counting Functions
 5.4 Vertex Colourings of Graphs
 5.5 Edge Colourings of Graphs
6 The Inclusion-Exclusion Principle   
 6.1 The Principle
 6.2 Counting Surjections
 6.3 Counting Labelled Trees
 6.4 Scrabble.
 15.5 The MSnage Problem
7. Latin Squares and Hall's Theorem.
 7.1 Latin-Squares and -Orthogonality
 7.2 Magic Squares
 7.3 Systems of Distinct Representatives
 7.4 From Latin Squares to Affine Planes
8 Schedules and 1-Factorisations    
 8.1 The Circle Method
 8.2 Bipartite Tournaments and 1-Factorisations of Kn
 8.3 Tournaments from Orthogonal Latin Squares
9. Introduction to Designs.
 9.1 Balanced Incomplete Block Designs
 0.2 Resolvable Designs
 0.3 Finite Projective Planes
 0.4 Hadamard Matrices and Designs
 0.15 Difference Methods
 9.15 Hadamard Matrices and Codes
Appendix
Solutions
Further Reading
Bibliography
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) leeflamesbasketballcamps.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)